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A generalization of the compound matrix method is presented to deal with eigenvalue and 
boundary-value problems involving unstable systems of ordinary differential equations. 
Details are given for fourth- and sixth-order problems. Next it is shown that a simple 
equivalence relation exists between the compounds of the solution matrices of the eigenvalue 
problems and their adjoints, and how this relation can be exploited to simplify the calculation 
of the adjoint eigenfunctions is discussed. Using the Orr-Sommerfeld problem as an example, 
it is also shown how the techniques used in the derivation of certain auxiliary systems, which 
play a crucial role in the generalization of the compound matrix method, can also provide an 
alternate method for the direct computation of certain quantities debned in terms of the eigen- 
function. Finally, there is a brief discussion of the relationship between the compound matrix 
method and the Riccati method. #c 1985 Acedemic press, I~C. 

1. INTRODUCTION 

In two earlier papers [ 1,2], we introduced the compound matrix method for the 
numerical solution of mathematically unstable linear eigenvalue and boundary- 
value problems with separated boundary conditions. Since those developments were 
mainly motivated by work on the Orr-Sommerfeld equation, the focus of our 
previous studies has been on problems involving single differential equations of the 
form 

~1v-a,~“‘-a2~“-a3~‘-a4~=f, (1.1) 

where ai (i= 1, 2, 3,4) and f are (complex) functions of x and 0 <x < 1 (say), and 
4 is required to satisfy an equal number of boundary conditions at the endpoints. 
The procedure outlined in [l, 21 consists of two essential steps. First, rather than 
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attempting to compute a set of linearly independent solutions of ( 1.1 ) which satisfy 
the boundary conditions at .Y =0 (say), we compute the minors of the 
corresponding solution matrix by a direct numerical integration of the so-called 
compound matrix equations which these minors satisfy. Next, we derive a second- 
order auxiliary differential equation the coefficients of which are some of the minors 
determined in the first step. The solution to the boundary-value problem is then 
obtained by integrating the auxiliary equation from s = I to 0 subject to the boun- 
dary conditions at s = 1. 

Because of the effectiveness of the compound matrix method in treating problems 
involving single equations of the Orr-Sommerfeld type, it is desirable to generalize 
the method to deal with other unstable differential systems, typically of order four 
and six, which frequently arise in the study of hydrodynamic stability. In this con- 
nection, we note that the necessary generalization of the first step of the method for 
systems can readily be found in the work of Schwarz [3] who gave a genera1 
algorithm for the derivation of the compound matrix equation associated with an 
nth order (complex) linear system of the form 

4’ = A(x)+ + f. ( 1.2) 

On the other hand, the method given in [ 1, 21 for the derivation of the auxiliary 
equation requires substantial generalization. In Section 2, therefore, we treat in 
detail the general technique for the derivation of certain auxiliary systems for 
fourth- and sixth-order problems of the form (1.2). 

In Section 3, we consider eigenvalue problems. In particular, we call attention to 
a simple equivalence relation that exists between the compounds of the solution 
matrices of the eigenvalue problems and their adjoints. We also discuss how this 
relation can be exploited to simplify the calculation of the adjoint eigenfunctions. In 
Section 4, we use some of the ideas discussed in Section 2 to derive an auxiliary 
system associated with the OrrSommerfeld equation. This auxiliary system 
provides an alternate method for the computation of certain quantities such as the 
disturbance Reynolds stress and the energy distribution which are of interest in the 
study of hydrodynamic stability. Finally, in Section 5, we discuss briefly the 
relationship between the compound matrix method and the Riccati method. 

2. BOUNDARY-VALUE PROBLEMS 

2.1. Fourth-Order Systems 

Consider the linear inhomogeneous system 

W = A(x)4 + f(x), o<x< 1, (2.1) 

where A(x) = [aJx)] is a 4 x4 matrix, f(x)= [fj(x)]’ and the solution 
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Q = [dj(x)lT are 4 x 1 column vectors. We shall also suppose that the boundary 
conditions at x = 0 and x = 1 are given by 

N(O) = P (2.2a) 

and 

QMl)=q, (2.2b) 

where P and Q are 2 x 4 matrices of rank 2 and p and q are 2 x 1 column vectors. 
By superposition, the solution to the two-point boundary-value problem can then 
be written in the form 

$=g+ctu+D, (2.3) 

where g is any solution of (2.1) which satisfies the initial condition (2.2a), while u 
and v are two linearly independent solutions of the homogeneous system 

4’ = A(x )$ (2.4) 

subject to the initial condition 

P+(o) = 0. (2.5) 

The constants tl and fl are determined by requiring that 4 satisfies the boundary 
condition (2.2b) at x= 1. 

Rather than attempting to compute g, u, and v explicitly as is the case with the 
other initial-value methods, the first step of the compound matrix method is based 
on considering certain minors of the 4 x 3 solution matrix m0 = [guv] of the 
inhomogeneous system (2.1) and the 4 x 2 solution matrix @ = [uv] of the 
corresponding homogeneous system. We note that the six 2 x 2 minors of @ are 

uj vi 
yij = 

I I u, VI ’ 
(2.6) 

for i= 1, 2, 3 and j= i+ l,..., 4. In terms of these 2 x 2 minors, the four 3 x 3 minors 
of @, can be written as 

‘ijk = giyjk + gjyki + gkyq, (2.7) 

wherei=l,2, j=i+l,..., 4andk=j+l,..., 4. For later purposes, we also note the 
quadratic identity 

Y12),34-Y13Y24+Y141)23=“~ (2.8) 
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which can readily be obtained from the Laplace expansion of the determinant 

UI 2’1 0 0 

u2 02 u2 02 
= 0. 

u3 03 u3 03 
(2.9) 

u4 04 u4 1’4 

If we now arrange the 2 x 2 minors of @ according to the lexicographical order of 
their indices to form the 6 x 1 vector y= [y12, yi3,..., ~7~~]‘, then y is called the 
second compound of CD which can also be denoted by C,[@]. Similarly 
z = c3 [%I = cz123, z124~ z134, z2341 ’ is called the third compound of aO. By a 
direct calculation or by using the algorithm of Schwarz [3, p. 2051, it is easy to 
show that 

where 

r 

a11 + a22 a23 

a32 01, + a33 

a(x) = 
I 

a42 a43 

-a31 a21 

-a41 0 
0 -a41 

where 

and 

y’ = B(x j y, 

a24 -aI3 --a14 

a34 aI2 0 
a11 +a44 0 a12 

0 a2, + a33 aj4 
a2, a43 a2, + a44 
031 - a42 a32 

(2.10) 

0 

-al4 

013 

-a24 

a23 

a33 + a44 1. 

Similarly, z must satisfy the equation 

z’ = C(x)z + D(x)f, 

all+a22+a33 a34 -a24 a14 

a4) a,,+a22+44 a23 -a13 

-a42 a32 a,,+a33+a44 a12 

a4l --a31 a2l a22 + a33 + 44 

Y23 -Y13 Y12 0 

D(x)= ;;I -;4”* 
0 Y12 

-Y14 )‘I3 . 

0 Y34 -Y24 y23 1 

(2.11) 

(2.12) 

Iv (2.13) 

(2.14) 
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Moreover, the initial conditions for y and z can easily be derived from (2.2a) and 
(2.5) using (2.6) and (2.7). 

Suppose now that y and z have been computed by integrating (2.10) and (2.12) 
from x=0 to 1 subject to the appropriate initial conditions, the next step of the 
compound matrix method requires that the solution of the boundary-value problem 
(2.1), (2.2) be obtained from an auxiliary second-order system. 

First, we note that for fixed i, j with i #j, (2.3) gives 

fji-gi=aui+fivi (2.15) 

and 

(2.16) 

whence it follows that 

(2.17) 

and 

-YijB= (dim gibj- (4j- gjbi. 

On substituting (2.17) and (2.18) into 

(2.18) 

(2.19) 

and simplifying, we have 

J’ij4: = aip( Ypjtii- l’pitij- zipj) + Yijfi, (2.20) 

where the summation is to be taken over p. Moreover, on interchanging i and j in 
(2.16), and on noting that yii= -yji and ziPj= -zjPi, we obtain 

Yij4~=“jp(Ypjdi- Ypi4jizipj) + Yijfj. (2.21) 

Equations (2.20) and (2.21) thus form a closed system which can be used for the 
determination of tii and #j by integrating backward from x = 1 to 0. 

To determine the initial condition for 4 at x= 1, we rewrite (2.3) in matrix form 

(2.22) 

This is a linear homogeneous system with a nontrivial solution [ 1, -a, -/?I’. 
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Hence the determinant of any three rows of the coefficient matrix must vanish. This 
in turn implies that 

D(x) Q(x) = z(x), (2.23) 

where D(x) is given by (2.14). Incidentally, we note that the derivation of (2.23) 
from (2.22) provides a simple algorithm for computing the matrix D(x) in (2.14). 
By using row reduction and the quadratic identity (2.8), it is easy to show that the 
augmented matrix associated with (2.23) is of rank 2, i.e.. 

. (2.24) 

0 0 0 

Clearly then the boundary conditions (2.2b) together with (2.24) form a system of 
four linear equations of the form 

Thus 4( 1) can be uniquely determined provided that 

det -D:g, #(). [ 1 Q 

(2.25) 

(2.26) 

We note that this condition must be satisfied if the boundary-value problem (2.1), 
(2.2) is to have a unique solution. This follows from the fact, which can be verified 
by a direct calculation, that (2.2b) is equivalent to the condition that 
det[Q@( 1 )] # 0, where @ is any solution matrix of the homogeneous system (2.4) 
which satisfies the homogeneous boundary conditions P@(O) = 0. 

Suppose now that bi and 4j are computed by integrating (2.20), (2.21) from I = 1 
to 0 and that the remaining two components of 6 are obtained algebraically by 
solving D*(x) 4(x) = z*(x), then it is necessary to show that 4 thus determined is 
the solution of the boundary-value problem (3.1), (2.2). 

First, we consider (2.20) and (2.21). Using (2.23), we can rewrite (2.20) and 
(2.21), respectively, as 

Y&K--a,d,-fi)=O (2.27) 

and 

~~(4; - aid, -4) = 0. (2.28) 
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Second, differentiating (2.23) and noting that D’ = CD - DA, we obtain 

D($‘-A$--f)=O or D*(+‘-A$-f)=O. (2.29) 

Equations (2.27)(2.29) can clearly be combined to obtain 

H(+‘-A+-f)=O, (2.30) 

where H is nonsingular. Hence $ is a solution of (2.1) and it satisfies the initial con- 
dition (2.25). 

Finally. we note that the solution of the boundary-value problem (2.1), (2.2) 
must also satisfy the initial condition (2.25) at x = 1. Hence by uniqueness, if $ is 
the solution of the initial-value problem (2.1) and (2.25) as is presently the case, 
then it is also a solution of the boundary-value problem (2.1), (2.2). 

2.2. Sixth-Order Systems 

Although we have restricted our discussion in Subsection 2.1 to fourth-order 
problems, the basic ideas are clearly quite general. In this section, we outline the 
corresponding results for problems involving sixth-order systems. These results, 
together with those presented in Subsection 2.1, are therefore directly applicable to 
a large class of unstable boundary-value problems which frequently arise in the 
study of hydrodynamic stability. 

To avoid repetition in our present discussion, direct reference will be made to 
specific equations in the previous section, but it should then be understood that the 
definitions of the various quantities involved must be suitably modified to deal with 
sixth-order systems. For example, the coefficient matrix A(x) in (2.1) is now 6 x 6, 
and f(x) and @(- Y are 6 x 1 column vectors. Similarly in (2.2), P and Q are 3 x 6 ) 
matrices of rank 3, and p and q are 3 x 1 column vectors. Analogous to (2.3), we 
write 

+=g+m+pv+yw, (2.31) 

where g is any solution of (2.1) which satisfies the initial condition (2.2a), while u, v, 
and w are three linearly independent solutions of (2.4), (2.5). 

Consider now the solution matrices a,, = [guvw] and @ = [uvw]. The twenty 
3 x 3 minors of @ are 

ui vi #‘i 

.t’ijk = uj vj u) , 

uk vk wk 

(2.32) 

where i = 1,2, 3,4, j = i + l,..., 5, and k = j+ l,..., 6. The fifteen 4 x 4 minors of mO 
can be written as 

=ijkl= gi Yjkl - gj Ykii + gk Y/g - gl Yijk? (2.33) 
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where i=l,2 ,..., 6, j=i+l,..., 6, k=j+l,..., 6, and l=k+l,..., 6. Moreover, by 
considering the Laplace expansion by complementary minors of the determinant 

ui uj N’, 0 0 0 

“, L: w, uj v, u; 
u m v, u’, u, 0, M’, = 0, (2.34) 
Uk Vk Wk Uk Vk Wk 
u, v, M’, U[ l?[ M’, 
unl vr?l ‘%‘m 0 0 0 

we obtain 30 quadratic identities of the form 

Y rp I’klm - r ikm yjinz + Y r/m .‘jkm = 0, (2.35) 

where nz = l,..., 6; i, j, k, I # WI; 1 6 i -c j < k < I < 6. 
If we let Y = c3c@l = [Y123y Y124?..., Y4561T and z=C,[@,] = 

L-z ,234, ~1235,..., z3456]T, then y and z satisfy the compound matrix equations (2.10) 
and (2.12), respectively. The elements of the matrices B, C, and D in these 
equations are given, respectively, in Tables I, II, and III. 

Corresponding to (2.20) and (2.21), we now have the auxiliary system 

l)ijkdI =aip(l)p~kdi- yprkdj+ ypijdkpZipjkik) + yijkfi, (2.36) 

(2.37) 

Yiik~;=akC1()‘~jkjkj-y~ik~j+ )Ipij6kpZipjk)+ )ijkfk. (2.38) 

Furthermore, by using the quadratic identities (2.35) and after a somewhat lengthy 
calculation, we can show that the augmented matrix [D(x) 1 z(x)] is of rank 3, i.e., 

I’124 -Y123 0 o ’ z1234 

-Y245 Y235 -4’234 o 1 ?345 

r Y456 -Y356 Y346 ’ 1 -Y345 / z3456 
-. 

I 
I 

-- 1 = 
--- 

0 0 

1: --------------- 
0 0 0 0 010. : : : : : 1 : 

0 0 0 0 b ----I___ J b ! 0 

(2.39) 

Clearly then the initial condition for 4 at x = 1 can be uniquely determined using 
(2.25). Thus once y and z have been computed by integrating (2.1Ok(2.12) from 
x =0 to 1, the solution $ can be obtained by integrating (2.36)-(2.38) backward 
from x = I to 0. Moreover, as in the fourth-order case, we can show that $ is indeed 
the solution of the sixth-order boundary-value problem (2.1), (2.2). 
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TABLE I 

The Matrix B Given in Terms of the Elements ai, for Sixth-Order Problems” 

slz31 aS4: aJ51 a36:-a21!-a25:-a261 0 I 0 I 0 : al,: aI51 atb: 0 : 0 I 0 I 0 : 0 : 0 : 0 
----:----:----;----;----;----;---:----I---:----:----;---:----:----:----;----;----:----;----:---- 

a43:5,24: a451 a,61 az3: 0 : 0 :-a251-a2b: 0 :-a13: 0 I 0 I al5: aI61 0 I 0 : 0 : 0 : 0 
----:----;----:----;----:----:--:----I----~----;--:----~----~----:----:----~----;----~----;----:---- 

as31 a54:s125: aS6: 0 : az31 0 I a?,: 0 :-az6: 0 :-al31 0 :-a14: 0 : aI&: 0 I 0 : 0 I 0 
---;----;----:----:----;---;--;----I---;----:---:----I----:----:----:----I----;----:----:---- 

ab31 ab41 ab51slzb: 0 : 0 ! az3: 0 : a?,: aB: 0 ! 0 :-a13: 0 I-a141-a15: 0 : 0 : 0 I 0 
----;----I----I----:----;----:--:----:----:--;---;---:----;----I----I----I----:----I----;---- 

-aJ21 aJ2: 0 : 0 lyS4: aJ5: a,b:-a351-a36: 0 : a12: 0 I 0 ( 0 I 0 : 0 : al51 alb: 0 : 0 
----:----:----I----I----:---;--:----:----;----:---:---I----;----I----:----:----:----:----;---- 

-aS2: 0 : aJ2: 0 : a54!5135: aS6: as41 0 :-a&: 0 : alZl 0 I 0 : 0 I 
----I----I----I----;----I---, 

0 :-a,,: 0 I a16: 0 
‘--I---I---;---:--;---:----I----I----;----:----:----I----;--- 

-ab2: 0 : 0 : aS2: ab4: a65:513b: 0 : a3,: a=: 0 ! 0 : 
---I----:--;---;----, 

a12: 0 I 0 : 0 : 0 :-a1,:-a15: 0 
‘---:--:----:---:-:--:---;---1----1----~----:----~----;---- 

0 :-aS2: a,?: 0 :-ass: a43: 0 :slJ5: aS6:-a66: 0 I 0 : 0 I alZ: 0 : 0 : al3: 0 I 0 I alb 
----;---:---:----:----:--:--:---;----:----:--I---:----I----I----I----:----:----:----:---- 

0 +ab2: 0 : a,*:-ab3: 0 : aJ3: a65:s14b: a,5: 0 I 0 : 0 I 0 I a12: 0 I 0 : aI31 0 I-al5 
----:---I---:----:----:----:--:----I---:---:--I---:----:----:----(--------:----I----:---- 

0 I 0 :-ab2: aS2: 0 !-ab3: %31-a61: a5,:5,561 0 : 0 : 0 : 0 : 0 : a12: 0 : 0 I a13: aI4 
----;---I----:----:----:---:--I---;---;---:---I----I----:---:----;---I----:----;----;---- 

a411-a31: 0: O:aZll 0: 01 01 0 I 0 :az3,1 a,5: aJ61-aS5!-aSbl 0 I az51 azb: 0 : 0 
---;---I----;----:----:----;--;---:---:-:---1---:-----~--I-----1----;----;----I--- 

aS1: 0 :-a3,: 0 I 0 I azll 0 I 0 I 0 : 0 : a54:935: as61 a3,: 0 I-aJ61-az11 0 : az6: 0 
----;----;----:----I----I---I--:----;--;-:--;---:---I----;----:----I----I----;---I---‘ 

‘61: 0 : 0 :-aS1: 0’: 0 I a2,1 0 : 0 : 0 : a&,: ab5:szSbl 0 : au: as51 0 :-a2,:-az51 0 
----:----:---;----;----I-----I----;----:---:---:---;----I----:----I----I----I----;----I---- 

0 i a51:-a,1: 0 : 0 : 0 I 0 : a?,: 0 : 0 :-%3! a,3: 0 :s~,~: aS61-albl az3: 0 : 0 I az6 
----:----:---I----;----;--;--;----:---:---:--;---:----I----I--;----;----I---:----:---- 

0 : abl: 0 :-aJ1l 0 : 0 : 0 : 0 : azl: 0 :-ab3: 0 : aJ31 ab51szJ6: aa5: 0 : az3: 0 :-az5 
----:----:---;----I----:----;--;----:----:---I--;---;---:----:---I----:----I----:---I---- 

0 : 0 : a61:-a511 0 : 0 : 0 : 0 : 0 : aZ1: 0 I-ab3: aS3:-a6,: aS41szS61 0 I 0 : az31 a2, 
----I----:----;----I----:---:--:---:--:--:---;--:----I----;---I----I----I----;---;---- 

0 : 0: 0: 0 I a51:-a41: 0 : aS1: 0 : 0 ( %2:-a42: 0 I aJ2: 0 I 0 ls3451 aS6:-a4&: as6 
----:----:----:----I----:---;---:----:----I--I---I---;---I----:----I----I----I----:----:--- 

0 I 0 I 0 I 0 i abl: 0 :-a,,: 0 : aSI1 0 I ab2: 0 I-al21 0 I aS2: 0 : a651531bl a45:-a35 
----:----:---;----:----:----:--;----:----I------I----;----I----;----I----:----I---:---:--- 

0 : 0 I 0 : 0 i 0 : ab,:-aS1: 0 : 0 : alI1 0 : abZ:-a$ 0 I 0 I aS2:-a6,1 a51:535bl a3, 
----I----I---I----:----;----;---:----I----I----:----:----;----I----I----:----I----:----I---- 

0 I 0 i 0 I 0 I 0 : 0 : 0 : a61:-a51: a,lI 0 : 0 : 0 : ab2:-aS21 aa2: a631-a53! a4315456 

*s,,~ denotes the sum of the diagonal elements of the ith, Ith, and mth row of A. 
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TABLE It 

The Matrix C Given in Terms of the Elements (I,, for Sixth-Order Problems” 

512341 a45 : a4& I-a35 :-aS6 I 0 : az5 ( azb : 0 I 0 :-al5 I-alb I 0 : 0 I 0 
-----1-----1-----1-----:-----~--------~-----~----~-----~-----~-----~-----1-----~----- 
as4 :s1235: as6 I a34 : 0 I-a36 :-aZ4 : 0 f az6 : 0 : at4 I 0 :-alb I 0 : 0 

-----;-----:-----:-----:-----I-----:-----~-----i-----I----I-----I----:-----I-----:----- 

a64 : ab5 ls12361 0 : a34 : a35 : 0 :-aZ4 I-az5 : 0 : 0 ! at4 : a,5 I 0 : 0 
-----I-----:-----:-----I------;--------~-----~-----~-----~-----~-----~-----~-----~----- 

-a53 I a43 I 0 :s1245: as6 I-a4b I az3 : 0 I 0 : az6 I-al3 I 0 I 0 :-atb I 0 
-----I-----:-----;-----1------:-----, ‘-----:-----I-----;----I-----:-----:-----:-----I----- 
-ab3 I 0 I a43 : ah5 :5t2461 a45 : 0 I az3 : 0 I-a25 I 0 I-al3 I 0 : at5 : 0 
-----;-----I-----:-----:-----I----------I-----I-----:----I-----;-----I-----:-----;----- 

0 :-ah3 I a53 :-ah4 : as4 15tzs6: 0 I 0 : az3 : az4 I 0 : 0 I-at3 :-at4 I 0 
-----:-----I-----I-----;----- I-----)-----I-----I-----I----;-----I-----I-----;-----:----- 

a52 :-a42 I 0 I a32 : 0 I 0 15,345: as6 :-a46 I a36 I at2 I 0 : 0 : 0 I-atb 
-----:-----I-----:-----:------~---I--;-----~-----~-----;-----l-----l-----~-----;-----l----- 

ab2 : 0 :-a42 I 0 : a32 : 0 : ah5 :513461 a45 :-a35 I 0 I aI2 : 0 I 0 : aI5 
-----;-----:-----I-----I------~---:-----~-----~-----~-----l-----~-----~-----~-----~----- 

0 i ab2 :-as2 : 0 : 0 I a32 :-ab4 I as4 ls135b: a34 I 0 I 0 I at2 : 0 :-at4 
-----I-----;----I-----;-----:-----I-----;-----I-----;-----I-----:-----I-----I-----I----- 

0 I 0 : 0 : ab2 I-as2 1 aq2 I ab3 :-as3 I a43 :s14561 0 I 0 I 0 I at2 I aI3 
-----I-----I-----:-----I-----:-----I-----:-----:-----;----I-----I-----:-----I-----I----- 
-as1 I all : 0 I-a3, I 0 I 0 : a2t f 0 : 0 ( 0 lS2345! as6 I-a4b ( a36 :-a26 
-----I-----I-----:-----I----I-----:-----:-----I-----:----I-----I-----I-----:-----:----- 
-abt : 0 : a4t I 0 :-a3t I 0 I 0 I a21 : 0 I 0 I ab5 lS2346! a45 I-a35 : a25 
-----:-----I-----:-----1------~--------~-----:-----~----~-----~-----~-----;-----;----- 

0 I-ah1 : as1 : 0 : 0 I-a3t : 0 : 0 : a2t : 0 :-ah4 t as4 :523561 a34 I-a24 
-----I-----I-----I-----:----:-----:---I-----:-----:---I-----I-----:----;-----I----- 

0 I 0 : 0 :-ah1 I as1 :-a4t : 0 : 0 : 0 I a2t : ah3 I-as3 : aQ iS241jb: a23 
-----I-----:-----I-----I-----I-----I-----I-----:-----;----:-----I-----;-----I-----I---- 

0 I 0 : 0 I 0 I 0 : 0 :-abt : as1 I-a4t : a3t I-ah2 I as2 I-a42 I a32 :53456 

d s ,,,,,,, denotes the sum of the diagonal elements of the ith, [th, mth, and nth row of A 

3. EIGENVALUE PROBLEMS AND THEIR ADJOINTS 

Consider the linear eigenvalue problem defined by 

4’ = N-x, J )Q, OBx< 1, 

P#O)=O 
and 

(3.1) 

(3.2a) 

Q+(l)=O, (3.2b) 

where A(x, IL) is a 2r x 2r matrix, P and Q are r x 2r matrices of rank r, $ is a 2r x 1 
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TABLE III 

The Matrix D Given in Terms of the Elements yy for Sixth-Order Problems 

Y234 I -y*sl : y12J : -y12J I 0 : 0 
-------I-------:------(-------;-------:------- 

Y235 I -y135 I y125 I 0 : -y123 : 0 
-------I-------l------(-------;-------;------ 

Y236 I -Y136 i Y126 I 0 : 0 : -Y123 
-------;-------I-------l-------~-------l------- 

Y245 I -Y145 I 0 I Y125 I -Y124 I 0 
-------:-------:-------I-------I-------:------- 

Y246 ( -Yl4b I 0 I Yl2b : 0 1 -Y124 
-------I-------;-------;-------:-------:----- 

Y25b I -ylrjb I 0 1 0 1 Y126 i -Y125 
-------I-------:-------I-------:-------I---- 

Y345 1 0 : -y145 1 Y135 : -y134 i 0 
-------:-------:------I------:-------;---- 

Y34b ( 0 : -Yf4& 1 Y136 : 0 : -y134 
-------:-------I------l-------)-------;---- 

Y35b 1 0 ; -Y156 1 0 : Y13& : -r135 
-------:-------I------;------;------;---- 

1456 : 0 1 0 i -Y15& I Y14b : -y145 
-------I-------I------I-----l-------:----- 

o I Y345 ; -Y245 : Y235 : -Y234 ; o 
-------;-------I-------;------l-------I-- 

0 : Y34b I -Y24& : Y23b ; 0 : -Y234 
-------I-------I-----:------I----:---- 

0 1 Y356 1 -Y256 I 0 1 Y23~ : ‘1235 
-------I-------I------I-----I------:----- 

0 I Y456 i 0 1 -Y256 1 Y24b 1 -Y245 
-------:-------I-----I------;-------:---- 

0 ; 0 : Y45b : -Y356 ; Y344 1 -y345 

vector and 1 is the eigenvalue parameter. Depending on whether r = 2 or 3, Eqs. 
(3.1), (3.2) define a fourth- or sixth-order problem for which many of the results 
given in Section 2 are directly applicable. 

Consistent with the notation of Section 2, we let y be the rth compound of the 
2r x r solution matrix @ of (3.1) which satisfies the boundary condition (3.2a) at 
x = 0. Clearly then y must satisfy the compound matrix equation [cf. (2.10)] 

Y’ = Wx, A)Y, (3.3) 

where the matrix B(x, 2) can be derived from A(x, I) as discussed in Section 2. By 
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using the rule that the compound of the product of two matrices is equal to the 
product of their compounds, it then follows from (3.2b) that 

C,[Q@(l )I = CrCQl . CL@(l)1 =O. (3.4) 

Equation (3.4) is the appropriate eigenvalue relation for (3.1) (3.2) and it is 
equivalent to requiring that a certain linear combination of the elements of y vanish 
at ,Y = 1. Thus to determine the eigenvalue, we can repeatedly integrate the com- 
pound matrix equation (3.3) from x = 0 to 1. while a Newton-type iteration scheme 
is used to vary 1 until the eigenvalue relation (3.4) is satisfied. 

Next we note that Q must also satisfy the auxiliary systems (2.20), (2.21) or 
(2.36)-(2.38) with z=O and f=O. The initial condition for $ at x= 1 can be 
obtained in the same manner as discussed in Section 2. Thus, once we have com- 
puted the eigenvalue, we can obtain $ by integrating (2.20). (2.21) or (2.36)(2.38) 
from s= 1 to 0. Moreover, using an argument identical to the one used for boun- 
dary-value problems, we can show that 4 is indeed an eigenfunction of (3.1), (3.2). 

Now, consider the adjoint problem of (3.1) (3.2) consisting of the system 

I$+’ = -A”@ A)++, (3.5) 

and the adjoint boundary conditions 

w(o)$+(o) = 0 (3.6a) 

and 

a,“( l)l$+( 1) = 0, (3.6b) 

where the superscript H denotes the conjugate transpose, and @ is the solution 
matrix of (3.1) which satisfies the boundary condition (3.2a). To obtain the adjoint 
eigenfunction $+, we may, of course, follow the same procedure for solving (3.1), 
(3.2) and first integrate the compound matrix system associated with (3.5), i.e., 

y+’ = -BH(x, L)y+, (3.7) 

from x = 0 to 1. Here yt denotes the rth compound of the 2r x r solution matrix mt 
of (3.5) which satisfies the boundary condition (3.6a). Once we have computed yt 
for 0 <X < 1, the adjoint eigenfunction $+ can be obtained by integrating the 
appropriate auxiliary system (either (2.20), (2.21) or (2.36)-(2.38)) from x = 1 to 0, 
except that the elements of y in these systems must now be replaced by the 
corresponding elements of yt. On the other hand, the above procedure can be sim- 
plified and the need for integrating (3.7) can be circumvented on noting that a sim- 
ple equivalence relation exists between the elements of y and yt. 

For the purpose of the present discussion, we first assume that the matrix A is in 
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normal form, i.e., the diagonal elements of A are all zero. It then follows that 6, = 0. 
By a straightforward but somewhat tedious calculation, it can be verified that 

y+ = Ty*, (3.8) 

where y* is the complex conjugate of y, and T is a constant antidiagonal matrix of 
the form 

0 t1n 

T= 1 1 . . . . (3.9) 
t nl 0 

For fourth-order (r = 2) problems, T is 6 x 6 and 

antidiag T = [t ,6r..., &al = CL -1, 1, 1, -1, 11. (3.10) 

Similarly for sixth-order (r = 3) problems, T is 20 x 20 and 

antidiag T 

=[l, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, -l,l, -1, 1, -1, 1, -11. (3.11) 

Now, consider the case where the coefficient matrix A is not in normal form. We 
then let N = A - A, where A = diag A and 

I$=E$ where E=E(x)=exp j:Ad*x . [ 1 (3.12) 

Then (3.1) becomes 

ifi = (E - ‘NE)& (3.13) 

where E --‘NE is a matrix whose diagonal elements are zero. Corresponding to 
(3.2), we have 

P&O) = 0 and CQWl)l $W=O. (3.14) 

It is easy to show that gt = (E*)-‘Qt, where E* is the complex conjugate of E, and 
6’ is the adjoint eigenfunction of (3.13), (3.14). Thus if we let @ and & be, respec- 
tively, the solution matrices of (3.1) and (3.13) which satisfy the boundary con- 
ditions (3.2a) and (3.14a), and at and &+ be the solution matrices of the 
corresponding adjoint problems, then 

@=E@ and a+ = (E*) - It@+. 

By taking the rth compounds of Eqs. (3.15), we obtain 

(3.15) 

Y = C,(E)9 and y+=C,[(E*)-‘]j++, (3.16) 
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where jr = C,(6) and i’ = C,(&,‘). Since 3’= Tg*, it follows from (3.16) that 

y+= C,[(E*))‘] TC,[(E*)P’]y*= [JC~S)] -‘Ty*, (3.17) 

where 

btl(.y)=exp tr(AH) d-v]. (3.18) 

Thus, once we have obtained y by integrating (3.3), yt can be obtained from (3.10), 
(3.11 j and (3.17), (3.18) with little further computation. Moreover, when these 
results are applied to the actual computation of the adjoint eigenfunction, it is not 
necessary to evaluate M(X). This is due to the fact that in replacing the elements of y 
in the auxiliary systems (2.20), (2.21) or (2.36)-(2.38) by the appropriate elements 
of yt, an overall multiplicative factor of yt (i.e.. M(X)) can clearly be omitted. 

We note that in most weakly nonlinear theories of hydrodynamic stability, it is 
often necessary to solve first an eigenvalue problem which governs the linear 
stability, and then a sequence of inhomogeneous boundary-value problems. For 
unique solutions to exist for these problems, it is necessary to require that their 
inhomogeneous terms be orthogonal to the adjoint eigenfunction of the linear 
stability theory. This in turn provides the various conditions needed for the 
systematic determination of the Landau constants in the Landau amplitude 
equation. An application of the procedure outlined in this section for computing the 
adjoint eigenfunction can therefore lead to a simplification of some aspects of non- 
linear stability calculations. 

4. A RELATED APPLICATION 

In this section, we wish to show, by means of the Orr-Sommerfeld problem, how 
certain quantities defined in terms of the eigenfunction of an eigenvalue problem 
can be computed directly using an appropriate auxiliary system of equations. 

In system form, the Orr-Sommerfeld equation, which governs the linear stability 
of parallel shear flows, is given by 

where 

4’ = Ah (4.1) 

[ 
0 10 0 

4 Ch 6, 4’9 #“I 7 0 A= 01 = 

o 00 

0 1 1’ (4.2) 

a41 0 a43 0 

with u4, = - (a4+iaR[a2(U--c)+U”]} and a4,=2aZ+iaR(U-c). Here 4 is the 
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amplitude of the disturbance stream function, U(x) is the basic velocity dis- 
tribution, c( and R are real parameters and c is the (possibly complex) eigenvalue 
parameter. For plane Poiseuille flow on the interval 0 <x< 2, we have V(x) = 
x(2 - x). If we consider only symmetric modes, then the problem can be studied on 
the interval 0 <x < 1 with boundary conditions 

fj(O)=&(O)=O (4.3a) 

and 

fj’(l)=f$“‘(l)=O. (4.3b) 

The solution of (4.1)-(4.3) using the compound matrix method has already been 
discussed in [l]. For our purpose, we need only note that the eigenfunction # 
satisfies the second-order auxiliary equation (cf. [ 1, Eq. ( 12)]) 

VI&’ - Y24’ + Y44 = 0, (4.4) 

where y,, yr, and y4 are elements of the second compound y of the 4 x 2 solution 
matrix of (4.1) which satisfies the homogeneous boundary condition at x = 0. In the 
notation of Section 2, y, = y12, y2 = y,3 and y4 = y,,. It is also convenient to 
rewrite #, y,/y, and y,/y, in terms of their real and imaginary parts, i.e., 

4 = 4, + i4,, y2/y, = s, + is,, 1’4/4’, = t, + iti* (4.5) 

Equation (4.4) then becomes 

(4.6) 

Consider now the so-called Reynolds stress function i,d,! - didi. Differentiating 
and then using (4.6), we have 

If we now define 

(4.8) 
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then it is easy to show that 

I-T,. 

I 
T? 
T3 T.t. 

Moreover, if we fix the 
ditions (4.3b) give 

sr s; -t, 0 

--St s, -t, 1 = 
0 2 0 0 (4.9 1 

-2ti -2t, 0 2S, 

normalization so that d( 1) = 1 (say), the boundary con- 

T,(l)=T2(l)=T4(l)=o and T3(l)= 1. (4.10) 

Equations (4.9), (4.10) thus show that once we have determined the eigenvalue c 
and obtained y by integrating the appropriate compound matrix system which y 
satisfies, then r = [T,, TV, TV, TJ~ can be obtained directly by integrating (4.9) from 
x = 1 to 0 without having first to compute 4. 

To test the effectiveness of this approach, we have computed ‘I using (4.9) for the 
eigenmode corresponding to 

a= 1, R = 105, and c = 0.2375 + 0.0037i. (4.11) 

The results we obtained for the Reynolds stress distribution T, were found to be in 
excellent agreement with previous results (see, e.g., [4, p. 2231). Our results for T, 
and TV, which can be interpreted as the energy distribution of the disturbance, are 
shown in Fig. 1. 
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FIG. 1. The disturbance Reynolds stress T, and the energy distribution T, for plane Poiseuille llow at 
a = 1, R = IO5 and c = 0.2375 + 0.0037i. 
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5. RELATIONSHIP TO THE RICCATI METHOD 
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In [2], we discussed the relationship between the Riccati method and the com- 
pound matrix method for fourth-order boundary-value problems. It is of interest to 
consider briefly a similar result for sixth-order problems. In particular, we wish to 
record the relationship between the Riccati matrix and the various components of 
the compound matrix y. 

For simplicity, we consider an eigenvalue problem consisting of a sixth-order 
homogeneous system of the form 

u’ = A,,(x)u + A,,(x)v, 

v’ = A,,(x)u + Az2(x)v. 
(5.1) 

Here All, A,,, A,,, and A,, are 3x3 matrices, ~=[d,,&,d~]~ and v= 
CGL h, &IT for 0 < x < 1. We shall also suppose that the boundary conditions at 
.x=0 are given by u(0) = 0. The exact form of the homogeneous boundary con- 
ditions at x= 1 need not, however, concern us. The first step in the application of 
the Riccati method is to define a transformation of the form 

u=Rv. (5.2) 

The 3 x 3 Riccati matrix R must then satisfy the equation [S], 

R’=A,,R-RA,,-RAz,R+A,2, (5.3) 

and it can easily be seen from (5.2) that the initial condition for R at x = 0 is 
R(0) = 0. To obtain the relationship between the elements of R and the components 
of y, we consider the general form of (5.2), i.e., 

U=RV or R=UV’, (5.4) 

where u ’ u * M’ , 
u= [ 1 242 t12 w2 and v= 

L4j V) ‘4-3 

A short calculation then gives 
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It follows from (5.4)-(5.6) and (2.32) that 

-??I46 ?’ 145 
- I’ 246 .1.‘245 . 1 (5.7) 

-‘346 1’345 

Similarly, it can easily be verified that when R is nonsingular, the inverse Riccati 
matrix S is given by 

-Y134 ‘124 

-?‘135 J-125 . 1 (5.8) 

-1’136 )‘I26 

Equations (5.7) and (5.8) can be compared to the corresponding results given by 
Davey [6] for fourth-order problems. 

6. DISCUSSION 

The major aim of the present paper is to provide a generalization of the com- 
pound matrix method to deal with eigenvalue and boundary-value problems involv- 
ing unstable ordinary differential systems. In contrast with most other initial-value 
techniques in which the solution must be computed as a linear combination of a set 
of basis solutions, the present method first derives a lower order auxiliary system 
whose solutions automatically satisfy the boundary conditions at one of the two 
endpoints. The solution to the original problem is then obtained by integrating the 
auxiliary system subject to the boundary conditions at the second endpoint. The 
application of this technique thus has the effect of “pinning down” the solution of 
the boundary-value problem at borh endpoints. In this regard the compound matrix 
method is perhaps quite similar to other boundary-value techniques such as the 
linite difference method and indeed this is the chief reason for the effectiveness of 
the method in treating highly unstable problems. 

We also believe that with some refinements, the present technique should also be 
very effective in dealing with problems of the singular perturbation type for which 
the solutions exhibit strong endpoint and internal boundary-layers. It is clear, of 
course, that due to the rapid increase in the order of the compound system, the 
method is not likely to be practical for problems of order higher than six. 
Nevertheless, our present results for fourth- and sixth-order problems are directly 
applicable to a large class of problems including many which arise from the study 
of hydrodynamic stability. Moreover, the basic ideas involved can easily be adapted 
to deal with problems involving systems of odd order, an example of which can be 
found in a recent study of the stability of the similarity solutions for swirling flow 
above an infinite rotating disk [7]. 
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We also wish to note that in the course of our study of the compound matrix 
method for sixth-order systems, we have derived a number of quadratic identities in 
addition to those given by (2.35). For example, by systematically replacing with 
zeros two of the rows in the first three columns of the matrix 

1 

UI VI M’1 1 l.41 0, W’, 
I 

u2 02 U’2 , u2 v2 U’2 
. . (6.1) . . :I: : : . . 

.I. . . 
u6 v6 w6 1 #6 v6 M’6 1 

and then expanding the corresponding determinants in terms of complementary 
minors, we obtain fifteen identities’ each consisting of four terms which are 
quadratic in the components of y. Moreover, these identities appear to be indepen- 
dent from those given by (2.35). Similarly, by setting in turn to zero one of the first 
six rows in the first four columns of the matrix 

g1 Ul 01 WI I u, VI iI’, 

g, u2 02 12’2 ; u2 v2 IV2 
. . . 
. . . :I: : : 
. . . 

.I. . . 

g6 u6 116 ,+‘6 I u,j v6 It’,5 
-----___ 

. 0 0 0 

(6.2) 

and letting k = 1, 2,..., 6, and then expanding the corresponding determinants, we 
obtain thirty quadratic identities involving products of the components of y and z. 
We have yet, however, to explore the full implications of these further identities 
since thus far they do not appear to play a central role in the overall development 
of the compound matrix method. Nevertheless, it would certainly be desirable to 
study these identities more systematically in the future since they will very likely be 
crucial to the further clarification of the relation between the compound matrix 
method and the Riccati method when they are applied to inhomogeneous boun- 
dary-value problems with general boundary conditions. One can perhaps even 
speculate that a systematic application of these identities may lead to certain 
significant simplifications of the compound matrix method in some special cases. 
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